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Overview

Objective: Outline an approach to modeling pneumatic envelopes, with
applications to balloons constructed from flat sheets of thin film

1. Applications of balloon technology

2. Design problem for a statically determinate balloon
(UMN 1950s, J. Smalley 1960-70s)

(a) ‘Designing’ a spherical balloon

(b) Axisymmetric membrane with σc � 0: natural shape balloon

Zero-pressure: P�z� � bz� P�0� � 0

Superpressure: P�z� � bz� p0 � P�0� � p0 � 0

(c) Pumpkin balloon (Smalley 1971, Yajima 1998, Schur 1998)
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Overview (continued)

3. Model Development (including elasticity)

(a) Previous work on large balloons�

(b) Geometric features: folds, wrinkling, lobes, wings.

(c) Variational formulation of analytical problem

i. Periodic lobes, no strain (FB, AIAA J 1996)

ii. Explicit internal fold (FB/Collier, ASME JAM 2000)

iii. Virtual fold (FB/Brakke, AIAA J 1998)

iv. Energy relaxation (Collier, 2000 GW doctoral thesis)

v. Ascent shapes+constraints (FB/Collier, AIAA J 2001)

(d) Numerical model

i. EMsolver - implemented in Matlab

ii. Surface Evolver (K. Brakke, C) - most features implemented

�W. Schur, applied tension field to balloons, AIAA-91-3668-CP



Overview (continued)

4. Benchmark Comparisons with ABACUS

(a) Strained zero-pressure natural shape at float,
EMsolver (with virtual fold) vs. ABACUS with tension field
(collaboration with W. Schur/WFF/PSL)

(b) Strained spherical containment vessel for a neutrino detector,
EMsolver with energy relaxation vs. ABAQUS with tension field
(collaboration with L. Cadonati, Borexino Project, Princeton U)

5. EMsolver applied to nonstandard problems

(a) Nonuniqueness of equilibrium shapes: ascent shapes of zero-pressure
natural shape designs with and without lobes.

(b) Pumpkin balloon (with tendon/film mismatch, collaboration with W. Schur)

6. Concluding remarks
This approach could be applied to other super-light membrane struc-
tures (e.g., solar sails, gossamer spacecraft, etc.)



Applications of Balloon Technology

� Terrestrial science

Æ Zero-pressure balloons (NASA’s standard large scientific balloon)

Æ Super-pressure balloons (NASA’s Ultra Long Duration Balloon - ULDB)

Æ Containment vessel for particle detectors

� Extraterrestrial science
(Mars, Venus, Uranus, Neptune, Saturn, Jupiter, Io, Titan, ... )

Æ Solar Montegolfier balloons

Æ Parachutes

Æ Solar sails

Æ Space inflatables and gossamer structures
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Designing a Spherical Balloon

Known Quantities Units
Buoyancy (float altitude) N/m3 bd � g�ρa�ρg�

Payload N L
Film weight density N/m2 w f

Load tendon weight density N/m wt

Number of tendons (gores) ng

Find radius R so that Archimedes’ Principle is satisfied:

Total Lift � Weight of Balloon System (1)

b � 4
3πR3 � w f �4πR2 �wt �ngπR�L

There is exactly one positive solution of (1)

Done!
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Equilibrium for an axisymmetric membrane
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p � bz� p0 - hydrostatic pressure, b - buoyancy

σm�s�t�s� - meridional contact force (σm - meridional stress resultant)

σc�s�e2�φ� - circumferential contact force (σc - hoop stress resultant)
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Natural-Shape Equations (σc � 0, UMN, 1950s)
Further developement and enhancements (J. Smalley, 1960-70s).

∂
∂φ

e2�φ� ��e1�φ� �� �0 �

∂
∂s

�rσmt��σce1�φ�� rf�

Let T � 2πrσm�s�

ODEs Boundary Conditions
θ� � �2πr�wsinθ� p��T�

T � � 2πrwcosθ�

z� � cosθ�

r� � sinθ�

θ�0� � θ0
1�

T �0� � L�cosθ0
1�

z�0� � 0�

r�0� � 0�
Auxiliary Conditions
θ�θ0

1� �� � �1
2π

r�θ0
1� �� � 0

�r�s��z�s��T�s��θ�s�� & �θ0
1� �� are found via a shooting method

Archimedes satisfied: bV �Wfilm �L
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Natural-Shape Profiles, σc � 0�T �� const.
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Æ Zero-pressure balloons. Typical missions are several days. ZP-balloons
are open at base and need significant ballast to maintain altitude (a)-(b)

Æ Super-pressure balloon. Add sufficient pressure so that day/night volume
changes are reduced. (c)

Æ Available thin films: not strong enough to contain the pressure, too heavy,
too expensive

Æ Use a doubly curved gore with very strong tendons � pumpkin shape.
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Observations and Model Assumptions

Æ Linear stress-strain constitutive law

Æ Isotropic material (E-Youngs modulus, ν-Poisson’s ratio)

Æ Constant strain model (T � SRe f �� T � S )

Æ Fine wrinkling via energy relaxation - facets are taut, slack, wrinkled

Æ Energy relaxation allows a tension field solution

Æ Folds can be used to describe distribution of excess material.

Æ Load tendons behave like sticky linearly elastic strings

Æ Shapes are characterized by large deformations but small strains.

Æ Hydrostatic pressure is shape dependent
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Variational Principle for a Strained Balloon

For S � C ,
Minimize: ETotal�S� � EP �E f �Et �St �S f

Subject to: V �V0

(closed system, P�z� � bz� p0� p0 is obtained from Lagrange multiplier)

ET Total energy
EP hydrostatic pressure potential
E f gravitational potential energy due to film weight
Et gravitational potential energy due to tendon weight
St strain energy of tendons
S f strain energy of film
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Energy Terms

Hydrostatic Pressure: EP ��
�

V
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Film Strain: S f �
�

Ω
Ŵf �G�dA� Ŵf �G� � 1

2S : G;

G � 1
2�C� I� - Green strain, C � FT F - Cauchy strain, and F - def. grad.

Second Piola-Kirchoff stress tensor

S�G� �

tE
1�ν2

�

G�νCof�GT�
�

�

Fine wrinkling: replace Ŵf by its relaxation Ŵ �

f leading to a Tension Field
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Comparison of EMsolver (virtual fold) with ABACUS (tension field)

Parameters
159 gores Gore length 182 m

b � 0�05429N/m3 ν � 0�82
E � 124 MPa Et � 26�24 kN

mf � 18�7 g/m2 mt � 0�0313 g/m
V � 832515m3 (zero-slackness)
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Strained lobed ascent shapes (multiple solutions for same loading)
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The Pumpkin Balloon
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Background on the Pumpkin Balloon

Æ J. Smalley coined the term pumpkin balloon. Extensibility of the film is
used to achieve the doubly curved pumpkin gore (early 1970s).

Æ CNES built several small pumpkin balloons, cutting half-gore panels with
extra material (M. Rougeron, CNES/France, mid-late 1970s)

Æ Sewing techniques to gather material at gore seams
(N. Yajima, Japan, 1998, see Adv. in Space Res., 2000).

Æ NASA/ULDB - structural lack-of-fit (shorten tendons) + material properties
(W. Schur, PSL/WFF, 1998, see AIAA-99-1526).
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Strained Pumpkin Balloon
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Principal stresses for superpresure natural-shaped and pumpkin balloons.
(a)-(b) 2.9% slackness; (c)-(d) 2.2% tendon shortening.

(joint work with W. Schur)

(a) “Meridional” stresses-slack tendons (c) “Meridional” stresses - tendon shortening
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(b) “Hoop” stresses - slack tendons (d) “Hoop” stresses - tendon shortening
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Borexino Containment Vessel (joint work with L. Cadonati)

Stainless Steel Water Tank
18m ∅

Stainless Steel
Sphere 13.7m ∅

2200 8" Thorn EMI PMTs

Water
Buffer

100 ton 
fiducial volume

Borexino Design

Pseudocumene
Buffer

Steel Shielding Plates
8m x 8m x 10cm and 4m x 4m x 4cm

Scintillator

Nylon Sphere
8.5m ∅

Holding Strings

200 outward-
pointing PMTs

Muon veto:

Nylon film
Rn barrier

17



Borexino Containment Vessel (joint work with L. Cadonati)

Ø13700 mm
Ø10500 mm

OUTER VESSEL SSS

SUPPORT
STRAP

POLAR
SUPPORT
ROD

PIPES

Ø8500 mm

INNER VESSEL
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Borexino (continued)

Schematic Reference/Initial Configs.
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Principal Stress Resultants, P�z� � 50 Pa
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ABACUS displacements (b 	� 0, 0.1% density difference)
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Future Balloon Research

Æ Pumpkin - Deployment problems, new features observed during ascent
and launch (stress raisers?), optimal gore design.

Æ Validation - compare actual strain measurements to EMsolver predictions.

Æ Aerodynamic loading of a strained balloon (link computational fluid dy-
namics and structural analysis).

Æ Apply our approach to space inflatables, solar sails & gossamer structures.
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